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Abstract: This research presents a new approach to computer automation, termed Re�exive Au-
tomation, through the implementation of novel real-time music information retrieval algorithms
developed for this project. It introduces the development of the PnP.Maxtools library, a ‘plug and
play’ set of �lters, subjective timbral descriptors, audio e�ects, and other objects developed in Cy-
cling ’74 Max that is designed as a framework for building musical systems for music using live
electronics without the use of external controllers or hardware. The library is designed to take
incoming audio from a microphone, analyze it, and use the analysis to control an audio e�ect on
the incoming signal in real-time. This approach to automation and library together represents the
�rst de�ned method for performance and composition practice using music information retrieval
algorithms.

1 Introduction

Automation in computer music is traditionally understood as an o�ine approach to controlling mu-
sical parameters over time, while Re�exive Automation views computer automation in a manner like
classi�cation and regression algorithms found in machine learning systems, which automate outputs
based on training data and eventually inputs. However, re�exive systems do not require training. In-
stead, they respond to speci�c timbral features of live inputs through real-time analysis determined by
the music information retrieval algorithm(s) implemented in the system. MIR algorithms use indirect
acquisition of performance parameters from the incoming audio signal with a microphone. This is a
non-invasive method (as opposed to direct signal acquisition which involves physical augmentation
using sensors) for extracting parameters (Traube et al., 2003). By explicitly mapping the output of a
real-time MIR algorithm to control an audio e�ect that is processing the same signal used for anal-
ysis, Re�exive Automation provides a blueprint for creating meaningful interactive musical systems
between performers and computers.

Automation in music can refer to many things, but generally refers to any system that moves or
acts of itself. Automated composition refers to a “formal process to make music with minimal human
intervention” (Alpern, 1995). This type of composition removes the composer from a large portion
of compositional process; the composer only needs to invent the musical kernel for the composition.
Many of the automated composition techniques utilize computers to generate choices based on prede-
termined rules or algorithms, such as the Illiac Suite by Lejaren Hiller and Leanoard Isaacson at the
University of Illinois in 1956. Others, such as the music of Iannis Xenakis employ stochastic processes
for generating various musical parameters. The di�erence between these two methodologies, rule-
based and stochastic, is that in rule-based composition the computer makes decisions on behalf of the
composer. On the other hand, stochastic processes only “aid the composer by virtue of its high-speed
computations” (Cope, 1976). A third category are systems that use arti�cial intelligence. These systems
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are like rule-based systems in that they are programs based on pre-de�ned datasets used for train-
ing. However, they have the added capacity to de�ne their own rules while simultaneously providing
high-speed computational aid.

In live electronic music today, automatic listening programs are popular for changing musical pa-
rameters. However, very few resources exist for aiding composers attempting to create with these
tools. Many composers have developed their own complex approaches, such as Voyager by George
Lewis (Lewis, 2000), but still there seems to be very little or no taxonomy of automatic listening tech-
niques. There are several real-time MIR tools such as FluCoMa (Zbyszynski, 2019), FTM/Gabor Object
Library (Schnell & Schwarz, 2005), MuBu (Schnell et al., 2009), and �ddle~ and bonk~ by Miller Puckette
(Puckette et al., 1998) in Max. Malt et al. developed Zsa.Descriptors, a collection of real-time sound de-
scriptors for analysis in Max that includes models that can detect objective features such as the spectral
centroid, spectral spread, and spectral roll-o� using an FFT. These libraries do not provide additional
�lters, controls, or e�ects that can be used in conjunction with MIR tools. They require �uency in Max
and rely heavily on built in objects. Additionally, Malt et al. describes the “lack of knowledge of the
relationships between descriptors and the pertinent perceptual characteristics of the sound for use in
musical composition” as a factor in why MIR algorithms are rarely used in music composition (Malt
& Jourdan, 2008). Musicians can sometimes further complicate this relationship by employing broad
language. Another factor is that one descriptor is generally not useful for characterizing changes to
complex spectra. The question of how to meaningfully and accurately describe a sound, purposefully
retrieve data from that sound that relates to that description, and then use that data for a musical goal
quickly becomes very challenging.

This research presents an approach and library for understanding and implementing real-time auto-
matic systems, termed Re�exive systems, by framing automation as an automatic response to external
stimuli, or a “re�ex,” rather than a user-supervised approach for producing change over time. Re�exive
Automation, then, can be de�ned as any system that moves or acts of itself in relation to an external
force. As opposed to automatic listening programs, re�exive systems are more concerned with the re-
sponse from the system: the act of doing versus the act of listening. The degree of automatism or agency
that exists within these systems is due to explicit mapping choices made by the composer. However,
from the perspective of the performer it appears that the live electronics are fully autonomous. Re�ex-
ive Automation is intended to be used for creative purposes and may include for many alterations; it is
a philosophy more than a recipe. It addresses the challenges stated above not only with new MIR tools
but also with a conceptual framework for using these tools within a variety of musical contexts.

2 Reflexive Automation

It is perhaps easiest to understand Re�exive Automation as the simultaneous use of automation, map-
ping, and music information retrieval in a system, the output of which results in a re�ex that is the
direct result of the input. The term re�ex is used to communicate to performers that gesture, motor
control, and physicality typically associated with many years of practice on an instrument are valuable
and have expressive potential within these systems. Re�exive systems use information derived using
MIR techniques from an audio signal and map it to audio e�ects parameters which are processing the
same signal used for analysis. The way the e�ects or parameters change as a result of the input is
determined by the mapping strategies utilized in the system. However, they typically fall into one of
the following categories: one-to-one, one-to-many, many-to-one (Hunt & Wanderley, 2002).

The term Re�exive Automation is, in part, inspired by a biological re�exive system known as the
patellar re�ex test (Figure 1). In this analogy, the plexor is the incoming signal, or the action from
which information is derived. Once the information is retrieved through contact with sensory neurons
in the patellar, it is transmitted through the neuromuscular system and triggers an impulse in the motor
neurons in the quadriceps muscles. The re�ex arc occurs at the level of the spinal cord, meaning that the
associated movement occurs without involvement from the brain. The result is a short jerk in the knee
of the patient that happens automatically and involuntarily. It is an autonomous reaction that occurs as
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Figure 1: A simple biological re�exive system (left) and a digital re�exive system (right)

the direct result of a system of mapping of neurons in the body for the purpose of responding to external
stimuli. In the context of computer music with live instruments, this conceives of audio processing as a
gestural analog to the gestures of performers, as extensions of the sounds of their acoustic instruments.
Like the rapid movement of the knee, the e�ect on the resulting sound changes as a response to the
input, to the speci�c and unique sounds of the performance. The system must be designed to require no
additional involvement or supervision from a controlling force to operate internally on the system, such
as the composer or additional performers. In other words, it requires the absence of the involvement
of the ‘brain.’

Re�exive systems can already be found in electronics and audio systems. For example, a microphone
that clips does so in response to an input amplitude level that is too high to properly record. An over-
driven ampli�er results in distortion due to high gain levels that exceed voltage capacity. Systems such
as these respond to changes to the input, regardless of whether the transfer functions of these systems
are linear or nonlinear. All these systems utilize music information retrieval, albeit in a very non-
purposeful manner, and a system of mapping that determines how the system automates or responds
to the input.

2.1 A�ordances

Much live electronic music today requires performers to utilize several controllers, such as foot ped-
als, while playing their instruments. The often overly elaborate technical requirements and physical
demands of live electronic music can create barriers for musicians. By relying on speci�c qualities of
the sound of an instrument as the only external controller, the composer is inclined to become more
sensitive to the technical demands of the performance and the performer will have a better working
knowledge, through their instrument, of the system for which they are expected to interact. The only
necessary hardware requirements currently are a laptop, audio interface, microphone, and speakers.

Computer programs used for live performance often require the performer to synchronize with
a variety of cues, perform with a stopwatch and adjust the speed of their performance to arrive at a
certain place in the score at a speci�c time, or perform alongside a track for which sometimes vague
or unspeci�c graphic notation exists. These aspects of live electronic music can place the role of the
performer as secondary, or as accompaniment, to the electronics. Failure with regards to live electronic
performance in this context often means not performing the part “correctly” with regards to the score
— meeting all of the synchronization points, alignment, etc. — and does not often refer to the subtleties
of performance interpretation. Failure with regards to performing Chopin, for example, is related to the
speci�cs of the interpretation, whether by tempo �uctuations (rubato), dynamic �uctuations, or other
subtle distinctions not expressly notated in the score.
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Figure 2: A simple cybernetic system

With regards to timbre, some notation exists such as sul ponticello and sul tasto on string instru-
ments. Wind instruments can utilize a range of e�ects such as harmonics, multiphonics, noisier sounds
such as �utter tonguing, and singing and playing simultaneously. Each of these has their own unique
spectra and notation. Outside of this, performers have a wide range of terms that they use to classify
the types of timbre that can be produced on their instruments, such as brightness and warmth. While
these are perceived characteristics of timbre as opposed to a purely objective timbral analysis, they
provide a useful common language for notation. When building re�exive systems, it is not necessary
to include a separate notation for electronic elements in the score alongside the acoustic instruments,
because the notation for the performer and the resulting electronic manipulation can be written using
the same symbols or text. Text in the front matter of the score will su�ce, in most cases, for conveying
the behavior of the electronics to the performer.

3 Related Concepts

Re�exive systems can be further understood in terms of cybernetics, a �eld concerned with causal cir-
cular feedback systems (Steer, 1952). Robert Wiener cites the steering of a ship as “one of the earliest
and best-developed forms of feedback mechanisms,” and the broad context for understanding these sys-
tems has made them useful in many disciplines (Wiener, 2019). The notion of the sensor and controller
is important to cybernetic systems. The sensor compares what is happening to a system with a stan-
dard of what should be happening, while the controller adjusts the behavior of the system. In the ship
steering example, the helmsman adjusting the helm is the controller and the direction the ship takes
based on that control input, water disturbance, crosswinds, and tide is the sensor. The helmsman is not
in direct control of the ship, but rather in control of a complex system through a narrow set of inputs.
The sensor-controller paradigm within cybernetics is what creates feedback in a variety of contexts. A
simple cybernetic system is shown in Figure 2.

Re�exive systems create feedback loops through auditory responses by the performer based on
outputs which are mediated by the speci�cs of the system, i.e., what descriptors, controls, and e�ects
are implemented. The notion of listening and responding in real-time is an inherent aspect of music,
particularly in improvisation. Like the steering of a ship, the choice of input must be made based
on the current output from the system and how the sound is transformed by internal processes and
subsystems.

Building re�exive systems relates to paradigms found in software design for building applications.
One example in web development is the Model-View-Controller Design Pattern (Bucanek, 2009). Soft-
ware design patterns are templated, reusable solutions to commonly occurring problems within a given
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Figure 3: The Model-View-Controller software design pattern

context in software design. On their own they cannot be transformed directly into source or ma-
chine code, but instead are blueprints for solving problems in many di�erent applications and systems.
Whereas most patterns address speci�c problems, the Model-View-Controller design pattern describes
the architecture of a system of objects. The less clearly de�ned nature of the Model-View-Controller de-
sign pattern allows for broad applications in computer systems. It also plays an important role within in-
formation visualization (Heer & Agrawala, 2006). The Model-View-Controller design pattern is shown
in Figure 3.

The user is crucial in both Re�exive Automation and the Model-View-Controller design pattern to
interact with the system. In re�exive systems, the user controls the model with their instrument while
the descriptors and other speci�c aspects of the system are hidden from the performers’ view. The user
in the Model-View-Controller design pattern can likewise input control data in various formats. The
bene�t of this pattern is that the user is presented with abstracted controls and is not required to interact
with the full complexity of the system. Furthermore, the PnP.Maxtools library contains categories of
objects that function together as a framework like design patterns. It is intended to provide a template
for building re�exive systems, and the interchangeable nature of objects within each category facilitates
experimentation and prototyping.

4 PnP.Maxtools Overview

The PnP.Maxtools library1 includes �lters, timbral descriptors, controls, and e�ects that are designed
for the real-time implementation of re�exive systems for music composition and improvisation. While
most libraries in Max contain a set of similar objects based around a single tool or technique and pro-
vide many functions with that tool, the PnP.Maxtools package is designed as a framework using mod-
ular categories. While most objects in the package are novel, the e�ects are commonplace within the
computer music paradigm. These include plate reverb, distortion, variable delay, and a real-time im-
plementation of the famous Karplus-Strong plucked string algorithm (Karjalainen et al., 1998). Figure

1The package is currently available for download through the package manager in Max.
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Figure 4: The PnP.Maxtools category framework

4 shows one possible con�guration for the package categories. Each object from a category can be
used interchangeably with others from the same category to create numerous interactions and result-
ing sounds. Additionally, more con�gurations of these categories are possible depending upon the
mapping strategies, e�ects, and other objects used.

The goal behind creating categories of objects is to provide a strategy for building musical systems
for music with live electronics. Many packages in Max provide a set of limited tools, but they often
heavily rely upon the vast selection on built-in objects in Max. While this is generally considered
a feature of third-party libraries rather than a bug, it can often be overwhelming for beginners and
students. The categorical framework and ‘plug and play’ style of the package is designed to be as
user-friendly for Max users as possible. It is particularly geared towards beginning users and students,
requiring no additional objects outside of the package for building re�exive systems. This is aided
by additional package features, such as default arguments for all objects for general purposes and a
preset frame size of 2048 samples for all descriptors which utilize an FFT. Additionally, the package
launcher contains a demo where package objects can be randomly con�gured and techniques such as
creating cooperative descriptors, e�ects chaining, and event detection functions are described in detail.
Examples can be tested from within the demo then copied and pasted into another patcher and modi�ed
further. There are 43 objects in total.

4.1 Filters

The �lters provide pre-processing functionality and are intended to be used to restrict the range of
frequencies or remove unwanted sounds from an audio signal before analysis. All of the �lters are
implemented using the p�t~ object in Max using a frame size of 2048 samples.2 These objects func-
tion by gating frequency bins, allowing certain ones to pass through the p�t~ object una�ected while

2This object in Max is a method for implementing a Fast Fourier Transform that manages windowing and overlapping
needed to create a real-time Short Term Fourier Transform (STFT) analysis/resynthesis system.
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Figure 5: Weighting, g(z), as a function of critical band rate for boominess

multiplying the real and imaginary values of other bins by zero. In the p�t~ object subpatcher, the
furthest right outlet of the �tin~ object indexes the signal bin number and corresponds to the real and
imaginary signals for that bin. Using a few boolean operators such as <~, <~, ==~, etc. (“~” denotes
signal operators), it is possible to isolate any number of bins or bin regions for calculation.

4.2 Descriptors

The timbral descriptors in the PnP.Maxtools package are a set of high- and low-level objective and
subjective descriptors, the e�cacy of which was evaluated through a study to determine the degree
to which the output from these models align with perceived characteristics of that sound (Franklin,
2022). Additionally, evaluation of the PnP.Maxtools package was done using the Cran�eld model for
evaluating information retrieval systems (Mo�at et al., 2015). One of the bene�ts of the PnP.Maxtools
descriptors is that they output a normalized �oating-point value between 0-1, where 0 corresponds
to low perceived characteristics and 1 high perceived characteristics. With this standardization, it is
possible to create cooperative descriptors, or descriptors created through the implementation of more
than one descriptor simultaneously. For example, a particular sound may be best described as having
both signi�cant spectral roughness and depth. This will distinguish the sound from others which may
correlate with signi�cant spectral roughness or depth, but not both. This may be calculated using:
D(n) = (Roughness ∗ 0.6) + (Depth ∗ 0.4) where (n) is the value at the nth index or frame. This
section presents the newest additions to Max environment.

4.2.1 pnp.boominess~

A boomy sound is one that conveys a sense of loudness, depth, and resonance. Several boominess
calculations have been proposed, such as the Booming Index as described by Shigeko Hatano and Takeo
Hashimoto in “Booming Index as a Measure for Evaluating Booming Sensation” (Hatano & Hashimoto,
2000). The method of calculation Hatano et al. propose makes use of the order analysis of a sound.3
From this the fundamental frequency and harmonics can be determined and the loudness of these
calculated. In Max, pnp.boominess~ calculates the apparent boominess of an incoming signal based on
the sharpness model described by Fastl and Zwicker in “Psychoacoustics: Facts and Models” (Zwicker
& Fastl, 2013). However, Fastl et al. proposes that boominess is a measure of the low frequency content
of a sound rather than high frequencies; the greater the proportion of low frequencies the greater the
‘booming’ sound. So boominess can be considered the opposite of the sensation of sharpness. Using
Fastl and Zwicker’s approach boominess can be calculated as:

3Order analysis is used to quantify noise or vibration in rotating machinery whose rotational speed changes over time.
An order refers to a frequency that is a certain multiple of a reference revolution speed or r.p.m. of operation.
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Figure 6: Social-EQ graphic equalizer representing the timbral descriptor deep

Boominess = 0.11

n(13,500Hz)∑
n(0Hz)

x(n) ∗ gz(n) ∗ z ∗ 0.1

n(13,500Hz)∑
n(0Hz)

x(n)0.1

where N is the total spectral loudness, g(z) is the weighting factor for boominess as a function of
the critical-band rate, and dz is a scaling factor. Only for critical-band rates less than 22 bark does the
weighting factor increase from unity to a value of 4.5 at the end of the critical-band rate near 0 bark
(Figure 5).

4.2.2 pnp.depth~

A deep sound is one that conveys the sense of having been made far down below the surface of its
source. Whilst the attribute of depth is mentioned in several academic papers, only AudioCommons
has proposed a model and suggested acoustic correlates (Pearce & Brookes, 2019). However, an on-
line experiment by Cartwright et al. called Social-EQ asked subjects to submit a timbral descriptor
together with an appropriate setting on a 40-band graphic equalizer that demonstrates that descrip-
tor (Cartwright & Pardo, 2013). Six subjects chose to submit the term deep. The 40-band equalization
treatment submitted by each subject is shown in the Figure 6. The mean equalization of all subjects,
and 95% con�dence intervals, are shown in the thicker black line.

There is a clear trend in Figure 8 that shows that all subjects’ EQ treatments emphasized the low
frequency content of the signal. Since there is a large degree of commonality in these EQ treatments,
it is likely that timbral depth is related to having emphasized low frequency content. Pearce suggests
that a suitable model for depth would be to analyze: 1) the spectral centroid of the lower frequencies
(energy pulling towards the low-end); 2) the proportion of low frequency energy; and/or 3) the low-
frequency limit of the audio extract (the low frequency roll-on). The pnp.depth~ implementation is a
direct implementation of the model described by Pearce. It includes calculation of the lower spectral
centroid and the ratio of energy between 30Hz and 200Hz compared to all energy up to the Nyquist
frequency. The lower spectral centroid is calculated using:
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Lower Spectral Centroid =

n(200Hz)∑
n(30Hz)

f(n)x(n)

n(200Hz)∑
n(30Hz)

x(n)

where n(ω) is the bin number relating to frequency ω, f(n) is the frequency of the nth bin, and
x(n) is the magnitude of the nth bin. The model also calculates the ratio of energy between 30Hz and
200Hz compared to all energy up to the Nyquist frequency:

Ratio =

n(200Hz)∑
n(30Hz)

x(n)

n(Nyquist)∑
n(0Hz)

x(n)

where n(Nyquist) is the frequency relating to the Nyquist frequency.

4.2.3 pnp.flatness~

The pnp.�atness~ object calculates the spectral �atness of each FFT frame. The spectral �atness is used
to quantify the tonal quality, i.e., how tone-like the sound is as opposed to being noise-like (Izmirli,
2000). Spectral �atness is de�ned by the ratio of the geometric mean to the arithmetic mean of the
power spectral density components in each critical band. It is calculated as:

Spectral Flatness =
n

√
Π

n(Nyquist)
n(0Hz) x(n)

1

n

n(Nyquist)∑
n(0Hz)

x(n)

where n(ω) is the bin number relating to frequency ω, n(Nyquist) is the frequency relating to the
Nyquist frequency, and x(n) is the magnitude of the nth bin. The Max implementation is a modi�ed
implementation of the model by Izmirli that performs calculations on each bin within a frame rather
than on critical bands.

4.2.4 pnp.hardness~

A hard sound is one that conveys the sense of having been made (i) by something solid, �rm, or rigid;
or (ii) with a great deal of force. Although no explicit model of hardness exists in the literature, there
is an indication that the attack and the spectral content of the attack determine the apparent hardness
(Andy Pearce, 2017). Research by Williams suggests that the onset portion of a sound determines
the perception of hardness (Williams, 2010). Additionally, Freed presents a model of mallet hardness
perception for single percussive sounds with respect to four acoustic correlates: 1) spectral mean level
(a form of long-term average spectrum, LTAS); 2) spectral level slope; 3) spectral centroid mean (mean
spectral centroid over time, measured on the bark scale); and 4) spectral centroid TWA (time weighted
mean of the spectral centroid) (Freed, 1990). A model of hardness was developed by Pearce et al. which
employs three metrics: (i) attack time; (ii) attack gradient; and (iii) spectral centroid of attack. The
model calculates the attack gradient (di�erence in amplitudes of the attack start and end levels divided
by the linear attack time) of the sound using a �xed attack time of 125ms:

Attack Gradient =
aend − astart

125
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where a is the amplitude relating to the attack of the signal. The attack spectral centroid is then
calculated over the �rst 200ms before the attack and 125ms after the attack start, or until the next onset
time if it happens before 125ms:

Spectral Centroid =

n(Nyquist)∑
n(0Hz)

f(n)x(n)

n(Nyquist)∑
n(0Hz)

x(n)

where n(ω) is the bin number relating to frequency ω, f(n) is the frequency of the nth bin, and
x(n) is the magnitude of the nth bin.

The implementation of hardness in Max is a modi�ed version of the model proposed by Pearce et
al. that calculates the attack gradient using a �xed attack time of 125 and the brightness4 and depth
of the attack using the PnP.Maxtools descriptors previously described over the �rst 10ms before the
attack and 125ms after the attack start (Andy Pearce, 2017). This is done to capture as much of the
period before the onset as possible without adding noticeable latency. The attack gradient, depth, and
brightness are then scaled so the maximum value that can be returned from the model is 1.

4.2.5 pnp.metallic~

The pnp.metallic~ object calculates the probability that an incoming sound is produced by a metallic
source. Aramaki et al. identi�es four timbre descriptors that are relevant signal features for the dis-
crimination between sound categories: attack time, spectral bandwidth, roughness, and normalized
sound decay. These are used to determine whether characteristics of a sound resemble that of sounds
made by metallic objects. In general, metallic sounds contain rich and complex spectra relative to other
sounds, such as those made by wooden or glass object (Aramaki et al., 2010). First, the spectral standard
deviation is calculated with the equation:

Spectral Standard Deviation =

√√√√√√√√√√√

n(Nyquist)∑
n(0Hz)

(f(n)− µ)2x(n)

n(Nyquist)∑
n(0Hz)

x(n)

where µ is the spectral centroid in hertz, n(ω) is the bin number relating to frequency ω, f(n) is
the frequency of the nth bin, and x(n) is the magnitude of the nth bin. The normalized decay time is
calculated by taking the absolute of the Hilbert Transform of the signal, followed by a low pass second-
order Butterworth �lter with a cut-o� frequency of 50Hz (Johansson, 1999). The logarithm of this is
taken after adding 1 to the result, which ensures that the logarithm of 0 is never calculated. This is
expressed with the equation:

Envelope = log10((F (|H(x)|)) + 1)

where x is the audio signal, H(x) is the Hilbert Transform of x, and F (x) represents �ltering of
the signal. The roughness is then calculated using the method proposed by Vassilakis described below
(Vassilakis & Fitz, 2007). The implementation in Max is a direct implementation of the model proposed
by Aramaki et al., where the metallic probability of each FFT frame is calculated. Only the attack time

4A brightness timbral descriptor, pnp.brightness,̃ is available within the PnP.Maxtools library. This is a well known de-
scriptor and not a new addition to Max. It is based on the brightness model developed by Pearce in "First prototype of timbral
characterization tools for semantically annotating non-musical content."
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was omitted from the calculation because the attack time is dependent upon the detection and analysis
of onsets in the signal, making resonance and the gradual decay metallic sound more di�cult to detect.

4.2.6 pnp.roughness~

A rough sound is one that has an uneven or irregular sonic texture. The pnp.roughness~ object calcu-
lates the apparent roughness of an incoming audio signal using an FFT and Gen~5 using the method
proposed by Vassilakis (Vassilakis & Fitz, 2007). The term auditory roughness was �rst introduced in
the literature by Helmholtz to describe the buzzing, harsh, raspy sound quality of narrow harmonic
intervals (Helmholtz, 2009). The dimension of dissonance correlating best with auditory roughness has
been termed sensory or tonal dissonance (Plomp & Levelt, 1965) or auditory dissonance (Hutchinson &
Knopo�, 1978). The Vassilakis Roughness model detects all peaks in the frequency spectrum for each
frame where: (i) the magnitude of the frequency bin is greater than 0.01; (ii) the magnitude of the pre-
vious and next bins are less than the current bin; and (iii) in the frequency range between successive
peaks the magnitude drops at least 0.01 below the magnitude of the lower peak. For each pair of peaks
within a frame, the roughness is calculated with the equation:

r = 0.5X0.1Y 3.11Z

with:

X = Amin ∗Amax

Y =
2Amin

Amin +Amax

Z = e(−3.5s(fmax−fmin)) − e(−5.75s(fmax−fmin))

s =
0.24

0.0207fmin + 18.96

where r is the roughness, Amax and Amin are the maximum and minimum magnitudes of the pair
of peaks, and fmax and fmin are the maximum and minimum frequencies of the two peaks respectively.

4.2.7 pnp.sharpness~

A sharp sound is one that suggests it might cut if it were to take on physical form. The pnp.sharpness~
object calculates the apparent sharpness of an incoming signal based on the model described by Fastl
and Zwicker (Zwicker & Fastl, 2013). Closely related to sharpness, however inversely, is a sensation
called sensory pleasantness. Fastl et al. de�nes a sound of sharpness 1 acum as “a narrow band noise
one critical band wide at a centre frequency of 1kHz having a level of 60dB.” However, sharpness is a
metric which has not yet been standardized. Consequently, there are several methods to calculate the
metric including: Von Bismarck’s method (Bismarck, 1974) introduces the idea of a weighted �rst mo-
ment calculation, Aures’s method (Aures, 1985) is a modi�ed version of Von Bismarck’s equation, and
Fastl and Zwicker’s method which is a version of Von Bismarck’s equation with a modi�ed weighting
curve. Like boominess, sharpness has been used to partially quantify sound quality in examples such
as measuring engine noise, and some domestic appliances such as vacuum cleaners and hair dryers.
It has also been used in the calculation of a sensory pleasantness metric and an unbiased annoyance
metric (Zwicker & Fastl, 2013). Using Zwicker and Fastl’s approach sharpness can be calculated as:

5Gen is an extension in Max that converts the patch into compiled C++ code that makes calculations at the audio sampling
rate rather than the vector rate.
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Figure 7: Weighting, g(z), as a function of critical band rate for sharpness

sharpness = 0.11

∫ 24Bark

0
N ’g(z)z dz∫ 24Bark

0
N ’dz

accum

where N is the total spectral loudness, g(z) is the weighting factor for sharpness as a function of
the critical-band rate, and dz is a scaling factor. Only for critical-band rates greater than 16 bark does
the weighting factor increase from unity to a value of 4 at the end of the critical-band rate near 24 bark
(Figure 7).

The AudioCommons implementation di�ers slightly from the above model. It windows the sound
into frames of 4096 samples and then calculates the loudness of all 1/3 octave bands within the window
up to the Nyquist frequency. The implementation in Max is similar, except that it uses an FFT to
calculate the sharpness of each frame up to 13,500Hz:

Sharpness = 0.11

n(13,500Hz)∑
n(0Hz)

x(n) ∗ gz(n) ∗ z ∗ 0.1

n(13,500Hz)∑
n(0Hz)

x(n)0.1

with:

gz =


1 if ∗ n∗ ≤ 2899 Hz
0.00012 ∗ (z/10.0)4 − 0.0056 ∗ (z/10.0)3

+0.1 ∗ (z/10.0)2 − 0.81 ∗ (z/10.0) + 3.5 if ∗ n∗ ≥ 2900 Hz

z = [v1, v2, ..., vn]

where n(ω) is the bin number relating to frequency ω, x(n) is the magnitude of the nth bin, vn is
the size of the FFT frame divided by 10, and gz(n) is the weighting factor for sharpness as a function
of the critical-band rate. Only for critical-band rates greater than 2899Hz does the weighting factor
increase from unity to a value of 4 at the end of the critical-band rate near 13,500Hz.
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4.2.8 pnp.warmth~

A warm sound is one that promotes a sensation analogous to that caused by a physical increase in
temperature. Several methods for calculating warmth have been proposed, all of which indicate that
concentrated low spectral energy correlates with the perception of warmth. Pratt et al. proposes that
a low spectral centroid and high energy in the �rst three harmonics above the fundamental frequency
indicates that a sound is warm (Pratt & Doak, 1976). The pnp.warmth~ object calculates the apparent
warmth of an incoming audio signal using a direct implementation of the the model described by Pearce
et al (Pearce & Brookes, 2019). This model calculates the spectral centroid of the mean warmth region:6

Mean warmth region spectral centroid =

n(fund∗3.5)∑
n(fund)

f(n)x(n)

n(fund∗3.5)∑
n(fund)

x(n)

where fund is the fundamental frequency relating to the signal, n(ω) is the bin number relating to
frequency ω, f(n) is the frequency of the nth bin, and x(n) is the magnitude of the nth bin. The model
also calculates the ratio of energy between the mean warmth region compared to all energy up to the
Nyquist frequency:

Ratio =

n(fund∗3.5)∑
n(fund)

x(n)

n(Nyquist)∑
n(0Hz)

x(n)

where n(Nyquist) is the frequency relating to the Nyquist frequency.

4.3 Controls

The controls provide a wide range of functionality. Most objects in this category modify output values
from descriptors to provide users with more control in terms of parameter automation or mapping.
Several of these objects remove either low or high values to prevent unwanted noise, such as pnp.nozero
and pnp.noone, while others smooth output values to prevent rapid value changes. The controls also
provide easing functions to create non-linear mapping in re�exive systems.

Many of the sound descriptors are amplitude dependent, so they are more likely to output higher
values if the amplitude of the incoming audio signal is higher. To prevent this, pnp.autoscale~. (Figure
8) is designed to track the amplitude of the incoming signal and scale it towards a target amplitude
value. The object is a modi�ed version of the Adaptive Signal Level Scaling object proposed by Mikahil
Malt and Emmanuel Jordan (Malt & Jourdan, 2009). The main di�erence is that pnp.autoscale~ uses
amplitude values from 0-1 as inputs, which allows it to be easily controlled by other objects from the
package. The second inlet (the patch cable connected to the box labelled 2) sets the amplitude level
to maintain, while the third inlet speci�es the trigger threshold. When the amplitude value threshold
from the third inlet is met, the object will scale the signal to the amplitude level speci�ed by the second
inlet.

6As de�ned by Pearce et al., the mean warmth region is the area between the fundamental frequency and the fundamen-
tal*3.5.
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Figure 8: The pnp.autoscale~ implementation in Max

5 Conclusion and Future Work

Re�exive Automation is an interdisciplinary method for computer music automation that is de�ned
as any system that moves or acts of itself in relation to an external force. It involve the simultaneous
use of automation, mapping, and music information retrieval in a system and describes automation as
part of a cybernetic system where real-time audio analysis tools implemented by the composer along
with mapping strategies dictate inputs. The PnP.Maxtools library is a library of real-time objects for
composers to build musical systems for music using live electronics as well as a design pattern used as
a blueprint for using the library objects. The intimate relationship between the source of the sound and
the proceeding e�ect on that sound is its primary point of concern, while reusability, customization,
and abstraction is its secondary point of concern. The PnP.Maxtools package in Max is equipped with
several categories: �lters, descriptors, controls, and e�ects. Objects within these categories can be used
interchangeably with others from the same category to build re�exive systems. The newest additions
to the Max programming environment have been detailed along with research used when developing
these models.

Future work will include creating a taxonomy of real-time MIR applications for music composition
utilizing the PnP.Maxtools package and framework included in the PnP.Maxtools package launcher.
This will provide a base upon which members of the Max community can build. New subjective de-
scriptors, such as glass and wooden timbral estimators alongside more common tools like chord, key,
and chroma analysis, are in development. By broadening the scope and applications of this software
through new tools and designs, the PnP.Maxtools package will become more robust and better able to
serve the needs of artists.
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